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Focusing waves inside inhomogeneous media is a fundamen-
tal problem for imaging. Spatial variations of wave velocity can
strongly distort propagating wave fronts and degrade image
quality. Adaptive focusing can compensate for such aberration
but is only effective over a restricted field of view. Here, we
introduce a full-field approach to wave imaging based on the
concept of the distortion matrix. This operator essentially con-
nects any focal point inside the medium with the distortion that
a wave front, emitted from that point, experiences due to het-
erogeneities. A time-reversal analysis of the distortion matrix
enables the estimation of the transmission matrix that links each
sensor and image voxel. Phase aberrations can then be unscram-
bled for any point, providing a full-field image of the medium
with diffraction-limited resolution. Importantly, this process is par-
ticularly efficient in random scattering media, where traditional
approaches such as adaptive focusing fail. Here, we first present
an experimental proof of concept on a tissue-mimicking phantom
and then, apply the method to in vivo imaging of human soft
tissues. While introduced here in the context of acoustics, this
approach can also be extended to optical microscopy, radar, or
seismic imaging.

waves | complex media | transmission matrix imaging |
sample-induced aberrations | acoustic speckle

L ight traveling through soft tissues, ultrasonic waves propagat-
ing through the human skull, or seismic waves in the Earth’s

crust are all examples of wave propagation through inhomo-
geneous media. Short-scale inhomogeneities of the refractive
index, referred to as scatterers, cause incoming waves to be
reflected. These backscattered echoes are those which enable
reflection imaging; this is the principle of, for example, ultra-
sound imaging in acoustics and optical coherence tomography
for light or reflection seismology in geophysics. However, wave
propagation between the sensors and a focal point inside the
medium is often degraded by 1) wave front distortions (aberra-
tions) induced by long-scale heterogeneities of the wave velocity
or 2) multiple scattering if scatterers are too bright and/or con-
centrated. Because both phenomena can strongly degrade the
resolution and contrast of the image, they constitute the most
fundamental limits for imaging in all domains of wave physics.

Astronomers were the first to deal with aberration issues in
wave imaging. Their approach to improve image quality was to
measure and compensate for the wave front distortions induced
by the spatial variations of the optical index in the atmosphere;
this is the concept of adaptive optics, proposed as early as
the 1950s (1). Subsequently, ultrasound imaging (2) and opti-
cal microscopy (3) have also drawn on the principles of adaptive
optics to compensate for the aberrations induced by uneven
interfaces or tissues’ inhomogeneities. In ultrasound imaging, for
instance, arrays of transducers are employed to emit and record
the amplitude and phase of broadband wave fields. Wave front
distortions can be compensated for by adjusting the time delays
added to each emitted and/or detected signal in order to focus at
a certain position inside the medium (Fig. 1A).

Conventional adaptive focusing methods generally require the
presence of a dominant scatterer (guide star) from which the sig-

nal to be optimized is reflected. While it is possible in some cases
to generate an artificial guide star, the subsequent optimiza-
tion of focus will nevertheless be imperfect for a heterogeneous
medium. This is because a wave front returning from deep within
a complex biological sample is composed of a superposition of
echoes coming from many unresolved scatterers (resulting in a
speckle image), and its interpretation is thus not at all straight-
forward. A first alternative to adaptive focusing, derived from
stellar speckle interferometry (4), is to extract the aberrating
phase law from spatial/angular correlations of the reflected wave
field (5–10). A second alternative is to correct the aberrations not
by measuring the wave front but by simply optimizing the image
quality [i.e., by manipulating the incident and/or reflected wave
fronts in a controlled manner in order to converge toward an
optimal image (11–17)]. However, both methods generally imply
a time-consuming iterative focusing process. More importantly,
these alternatives rely on the hypothesis that aberrations do not
change over the entire field of view (FOV). This assumption
of spatial invariance is simply incorrect at large imaging depths
for biological media (18, 19). High-order aberrations induced by
small-scale variations in the speed of sound of the medium are
only invariant over small regions of the image, often referred
to as isoplanatic patches in the literature (Fig. 1 B–D). Con-
ventional adaptive focusing methods thus suffer from a very
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Fig. 1. Adaptive focusing in ultrasound imaging. (A) Adaptive focusing
consists of adjusting the time delays added to each emitted and/or detected
signal in order to focus at a certain position inside the medium. (B) Tilt-
ing the same adaptive phase law allows the focal spot to be scanned over
the vicinity of the initial focal point. The area over which adaptive focusing
remains effective is called an isoplanatic patch. (C and D) Beyond this zone,
the correction no longer works.

limited FOV at large depths, which severely limits their perfor-
mance for in-depth imaging. Recently, however, several acoustic
imaging groups have demonstrated convincing approaches for
heterogeneous media, whether by mapping the speed of sound
distribution in the medium and using it to reconstruct an image
(20, 21) or via estimation of (and compensation for) time delays
for a local correction of aberrations (22–24). Each of these
methods leverages the multielement capabilities of ultrasonic
transducers to extract spatial coherence or travel time difference
between signals recorded by each array element. In this paper,
we propose a more general solution to optimize the information
offered by transducer arrays—a universal matrix approach for
wave imaging. We develop a rigorous mathematical formalism
for our approach and apply the theoretical results to aberration
correction for in vivo imaging of the human body.

Historically, the matrix approach for imaging was inspired by
the advent of multielement technology in acoustics and by the
insight that a matrix formalism is a natural way to describe ultra-
sonic wave propagation between arrays of transducers (25–27).
In the 2010s, the emergence of spatial light modulators allowed
the extension of this transmission matrix approach to optics (28).
Experimental access to the transmission matrix then enabled
researchers to take advantage of multiple scattering for optimal
light focusing (28, 29) and communication across a diffusive layer
(30) or multimode fiber (31). However, a transmission configu-
ration is not adapted to noninvasive and/or in vivo imaging of
biological media, motivating the development of approaches in
an epi-illumination configuration.

The reflection matrix has already been shown to be a powerful
tool for focusing in multitarget media (25, 32, 33), target detec-
tion (34–36), and energy delivery (37, 38) in scattering media. A
few studies have also looked at reflection imaging under a matrix
formalism (9, 39–41); however, as with most conventional adap-
tive focusing methods, their effectiveness is limited to a single
isoplanatic patch (Fig. 1). Spatially distributed aberrations have
not been addressed under a matrix approach until very recently
(10, 24, 42). Inspired by the pioneering work of Robert and Fink
(40), the concept of the distortion matrix, D, has been intro-

duced in optical imaging (42). Whereas the reflection matrix R
holds the wave fronts that are reflected from the medium, D
contains the deviations from an ideal reflected wave front that
would be obtained in the absence of inhomogeneities. In addi-
tion, while R typically contains responses between inputs and
outputs in the same basis [e.g., responses between individual
ultrasonic transducer elements (43, 44) or between focal points
inside the medium (45)], D is concerned with the “dual basis”
responses between a set of incident plane waves (46) and a set of
focal points inside the medium (40). In optical imaging, Badon
et al. (42) recently showed that, for a large specular reflector, the
matrix D exhibits long-range correlations in the focal plane. Such
spatial correlations can be taken advantage of to decompose
the FOV into a set of isoplanatic modes and their correspond-
ing wave front distortions in the far field. The Shannon entropy
H of D is also shown to yield an effective rank of the imaging
problem (i.e., the number of isoplanatic patches in the FOV).
This decomposition was then used to correct for output aberra-
tions when imaging planar specular objects through a scattering
medium.

In this paper, we develop the distortion matrix approach for
acoustic imaging. In view of medical ultrasound applications, this
requires a method that can go beyond imaging specular reflec-
tors in order to tackle the more challenging case of random
scattering media. Ultrasonic wave propagation in soft tissues
gives rise to a speckle regime in which scattering is often due
to a random distribution of unresolved scatterers. Apart from
specular reflections at interfaces of tissues and organs, the reflec-
tivity of the medium can be considered to be continuous and
random. In this paper, we demonstrate 1) how projecting the
reflection matrix into the far field allows the suppression of
specular reflections and multiple reverberations (clutter noise),
enabling access to a purely random speckle regime; 2) how, in
this regime, the far-field correlations of D enable discrimination
between and correction for input and output aberrations over
each isoplanatic patch; 3) how a position-dependent distortion
matrix enables noninvasive access to the transmission matrix T
between the plane wave basis and the entire set of image voxels;
and 4) how a minimization of the entropy H enables a quanti-
tative measurement of the wave velocity (or refractive index) in
the FOV.

Throughout the paper, our theoretical developments are sup-
ported by an ultrasonic experiment using a tissue-mimicking
phantom and further applied to in vivo ultrasound imaging
of the human body. Due to its experimental flexibility, ultra-
sound imaging is an ideal modality for our proof of concept.
Nevertheless, the distortion matrix approach is by no means
limited to one particular type of wave but can be extended to
any situation in which the amplitude and phase of the medium
response can be recorded between multiple inputs and out-
puts. This study thus opens important perspectives in various
domains of wave physics such as acoustics, optics, radar, and
seismology.

Results
Confocal Imaging with the Reflection Matrix. The sample under
study is a tissue-mimicking phantom with a speed of sound
cp = 1,542± 10 m/s. It is composed of a random distribution of
unresolved scatterers, which generate an ultrasonic speckle char-
acteristic of human tissue (gray background in Fig. 2A). The
phantom also contains eight subwavelength nylon monofilaments
of diameter 0.1 mm placed perpendicularly to the probe (white
point-like targets). The bright circular target located at depth
z = 50 mm on the image (Fig. 2B) is a section of a hyperechoic
cylinder composed of a higher density of unresolved scatterers.
A 15-mm-thick layer of plexiglass [ca ∼ 2,750 m/s (47)] is placed
on top of the phantom to create both strong aberrations and
multiple reflections (Fig. 2A).

14646 | www.pnas.org/cgi/doi/10.1073/pnas.1921533117 Lambert et al.
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Fig. 2. Matrix imaging. (A) Sketch of the experimental acquisition of Ruθ(t). An ultrasonic transducer array is placed in contact with a plexiglass layer,
which is on top of a human tissue-mimicking phantom. For each plane wave illumination θin, the backscattered wave front is acquired as a function of
array element uout and time t. (B) Original ultrasound confocal image (Eq. 4) with c = 1,800 m/s. (C) The ultrasound image after the removal of multiple
reflections is shown, along with (D) the corresponding map of the Strehl ratio S. (E) The ultrasound image after matrix aberration correction is shown, with
(F) the corresponding map of the Strehl ratio SF . The ultrasound images and Strehl ratio maps are displayed with the same decibel (dB) (black and white)
and linear (color) scales, respectively.

Our matrix approach begins with the experimental acquisition
of the reflection matrix R using an ultrasonic transducer array
placed in direct contact with the plexiglass layer (Fig. 2A). The
reflection matrix is built by plane wave beamforming in emis-
sion and reception by each individual element (46). Acquired in
this way, the reflection matrix is denoted Ruθ(t)≡R(uout, θin, t),
where u defines the spatial positions of the transducers and t
is the time of flight. Details of the experimental acquisition are
given in Materials and Methods. A conventional ultrasound image
consists of a map of the local reflectivity of the medium. This
information can be obtained from Ruθ by applying appropri-
ate time delays to perform focusing in postprocessing, both in
emission and reception (46). This focusing can also be easily per-
formed in the frequency domain, where matrix products allow
the mathematical projection of R between different mathemat-
ical bases (45). The bases implicated in this work are sketched
in Fig. 2A. They are 1) the recording basis, which here corre-
sponds to the transducer array elements located at u; 2) the
illumination basis, which is composed of the incident plane waves
with angle θ; 3) the spatial Fourier basis, mapped by the trans-
verse wave number kx , from which the aberration and multiple
reflection issues will be addressed; and 4) the focused basis in
which the ultrasound image is built, here composed of points
r = x x̂ + z ẑ inside the medium. In the following, we use this
matrix formalism to present our techniques for local aberration
correction and clutter noise removal. This is the ideal formal-
ism in which to develop our approach, which requires that we be
able to move flexibly from one basis to the other, in either input
or output.

We first apply a temporal Fourier transform to the experimen-
tally acquired reflection matrix to obtain Ruθ(ω), where ω= 2πf
is the angular frequency of the waves. To project Ruθ(ω) between
different bases, we then define free space transmission matri-
ces, P0(ω) and G0(ω), which describe the propagation of waves
between the bases of interest for our experimental configura-
tion. Their elements correspond to the two-dimensional Green’s
functions, which originate in the plane wave basis (48) or at
the transducer array (49) to any focal point r in a supposed
homogeneous medium:

P0 (r, θ,ω)= exp [ik (z cos θ+ x sin θ)] [1a]

G0 (r, u,ω)=− i

4
H(1)

0 (k |r− u|), [1b]

where H(1)
0 is the Hankel function of the first kind. k =ω/c is

the wave number. x and z describe the coordinates of the image
pixel positions r in the lateral and axial directions, respectively
(Fig. 2A). Ruθ(ω) can now be projected both in emission and
reception to the focused basis via the matrix product (48):

Rrr(ω) = G∗0 (ω)×Ruθ(ω)×P†0 (ω), [2]

where the symbols ∗, †, and × stands for phase conjugate, trans-
pose conjugate, and matrix product, respectively. Eq. 2 simulates
focused beamforming in postprocessing in both emission and
reception. For broadband signals, ballistic time gating can be
performed to select only the echoes arriving at the ballistic time
(t = 0) in the focused basis. This procedure is described in more
detail in ref. 45. It involves considering only pairs of virtual trans-
ducers rin = (xin, z )and rout = (xout, z ), which are located at the
same depth z (Fig. 3A); we denote this subspace of the focused
reflection matrix as Rxx (z ,ω) = [R(xout, xin, z ,ω)]. A coherent
sum is then performed over the frequency bandwidth δω to
obtain the broadband focused reflection matrix

Rxx (z ) =

∫ ω+

ω−

dωRxx (z ,ω), [3]

where ω±=ω0± δω/2 and ω0 is the central frequency. Each ele-
ment of Rxx (z ) contains the signal that would be detected by
a virtual transducer located at rout = (xout, z ) just after a vir-
tual source at rin = (xin, z ) emits a brief pulse of length ∆t =
δω−1 at the central frequency ω0. Importantly, the broadband
focused reflection matrix creates virtual transducers that have a
greatly reduced axial dimension compared with the monochro-
matic focusing of Rxx (z ,ω) (Eq. 2). This significantly improves
the accuracy and spatial resolution of the subsequent analysis.

Note that this matrix could have been directly formed in the
time domain from the recorded matrix Ruθ(t). A coherent sum
of the recorded echoes coming from each focal point r could be
performed to synthesize virtual detectors inside the medium. In
practice, this would be done by applying appropriate time delays

Lambert et al. PNAS | June 30, 2020 | vol. 117 | no. 26 | 14647
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Fig. 3. Removing multiple reflections with the matrix approach. (A)
Focused beamforming applied to Ruθ(ω) (Eqs. 2 and 3) yields the focused
reflection matrix Rrr that contains the set of impulse responses between vir-
tual transducers rin and rout at each depth z. (B) Modulus of matrix Rxx at
depth z = 25 mm. (C) Sketch of multiple reflections between parallel sur-
faces. (D) Modulus of matrix Rkk (Eq. 6) deduced from A. (E) Modulus of
matrix R′xx (Eq. 8) after cancellation of the main antidiagonal (kin + kout = 0)
in Rkk (Materials and Methods). (F) Modulus of filtered matrix RF built from
the estimator T̂ (Eq. 27). The matrices displayed in B and D–F have been
normalized by their maximum value.

to the recorded signals (46). The back-propagated wave fields
obtained for each incident plane wave would then be summed
coherently to generate a posteriori a synthetic focus (i.e., a vir-
tual source) at each focal point. Finally, the time gating step
described by Eq. 3 consists, in the time domain, of only keeping
the echoes arriving at the expected ballistic time.

In a recent work, the broadband focused reflection matrix
Rxx (z ) was shown to be a valuable observable to locally assess
the quality of focusing and to quantify the multiple scattering
level in the ultrasonic data (45). In this paper, Rxx (z ) is used as a
basic unit from which 1) a confocal image of the sample reflectiv-
ity can be built and 2) all of the subsequent aberration correction
processes will begin.

Fig. 3B shows Rxx (z ) at depth z = 25 mm. The brightness of its
diagonal coefficients is characteristic of singly scattered echoes
(35, 36, 45). In fact, the diagonal of Rxx (z ) corresponds to the
line at depth z of a confocal or compounded (46) ultrasound
image I (r):

I (r)≡ |R (xout = xin, xin, z )|2 . [4]

Fig. 2B displays the resulting image I(r) of the phantom and
plexiglass system. This image was created under an assumption of
a homogeneous medium, with a speed of sound of c = 1,800 m/s
used to calculate P0 and G0 (Eqs. 1a and 1b). This value of c
was not chosen based on any a priori knowledge of the medium

but rather, as the value that gives the least aberrated image by
eye—a trial and error method typically used by medical practi-
tioners and technicians. However, even with this optimal value
for c, the image in Fig. 2B remains strongly degraded by the plex-
iglass layer for two reasons: 1) multiple reverberations between
the plexiglass walls and the probe have induced strong horizon-
tal specular echoes and 2) the input and output focal spots are
strongly distorted (Fig. 1 C and D) because of the mismatch
between the homogeneous propagation model and the heteroge-
neous reality. In the following, we show that a matrix approach
to wave imaging is particularly appropriate to correct for these
two issues. A flow chart summarizing all of the mathematical
operations involved in this process is provided in SI Appendix,
Fig. S1.

Removing Multiple Reverberations with the Far-Field Reflection
Matrix. Reverberation signals are a common problem in medical
ultrasound imaging, often originating from multiple reflections
at tissue interfaces or between bones in the human body. Here,
we observe strong horizontal artifacts at shallow depths of the
image (Fig. 2B), which are due to waves that have under-
gone multiple reflections—often called reverberations in the
literature—between the parallel walls of the plexiglass layer. In
the following, we show that these signals can be isolated and
suppressed using the reflection matrix.

To project the reflection matrix into the far field, we define
a free space transmission matrix, T0, which corresponds to the
Fourier transform operator. Its elements link any transverse
wave number kx in the Fourier space to the transverse coordinate
x of any point r in a supposed homogeneous medium:

T0 (kx , x )= exp (ikxx ). [5]

Each matrix Rxx (z ) can now be projected in the far field via the
matrix product

Rkk (z ) = T0×Rxx(z )×T>0 , [6]

where the symbol > stands for matrix transpose. The resulting
matrix Rkk (z ) = [R(kout, kin, z )] contains the reflection coeffi-
cients of the sample at depth z between input and output wave
numbers kin and kout. An example of far-field reflection matrix
Rkk (z ) is displayed at depth z = 25 mm in Fig. 3D. Surprisingly,
this matrix is dominated by a strongly enhanced reflected energy
along its main antidiagonal (kout + kin = 0). To understand this
phenomenon, the reflection matrix Rkk (z ) can be expressed as
follows:

Rkk (z ) = T(z )×Γ(z )×T>(z ), [7]

where Γ(z ) = [Γ(x , x ′, z )] describes the scattering processes
inside the medium. In the single scattering regime, Γ(z ) is diag-
onal, and its elements correspond to the medium reflectivity
γ(x , z ) at depth z . T(z ) is the true transmission matrix between
the Fourier basis and the focal plane at depth z . Each column of
this matrix corresponds to the wave front that would be recorded
in the far field due to emission from a point source located at
r = (x , z ) inside the sample.

In SI Appendix, section S1, a theoretical expression of Rkk

is derived in the single scattering regime under an isoplanatic
hypothesis. Interestingly, the norm-square of its coefficients
R(kout, kin, z ) is shown to be independent of aberrations. It
directly yields the spatial frequency spectrum of the scattering
medium at depth z :

|R(kout, kin, z )|2 = |γ̃(kout + kin, z )|2 ,

where γ̃(kx , z ) =
∫
dxγ(x , z ) exp(−ikxx ) is the one-dimensional

(1D) Fourier transform of the sample reflectivity γ(x , z ). In

14648 | www.pnas.org/cgi/doi/10.1073/pnas.1921533117 Lambert et al.
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the single scattering regime, the matrix Rkk displays a deter-
ministic coherence along its antidiagonals (41, 44) that can be
seen as a manifestation of the memory effect in reflection (34).
Each antidiagonal (kin + kout= constant) encodes one spatial
frequency of the sample reflectivity. For the system under study
here, reflections occurring between the parallel surfaces of the
plexiglass obey kin + kout = k0 sin θ0, where k0 =ω0/c is the wave
number at the central frequency and θ0 is the angle between
the top face of the plexiglass and the transducer array (Fig. 3C).
Hence, signatures of such reflections should arise along the main
antidiagonal (kin + kout = 0) of Rkk .

We can take advantage of this sparse feature in Rkk to fil-
ter out signals from reverberation, independently of aberrations
induced by the plexiglass (Materials and Methods). Then, the
inverse operation of Eq. 6 can be applied to the filtered matrix
R′kk to obtain a filtered focused reflection matrix:

R′xx (z ) = T†0(z )×R′kk (z )×T∗0(z ). [8]

Fig. 3E shows an example of R′xx . Comparison with the original
matrix in Fig. 3B shows that the low-spatial frequency com-
ponents of the reflected wave field have been removed from
the diagonal of Rxx . The resulting R′xx now exhibits solely ran-
dom diagonal coefficients—a characteristic of ultrasonic speckle.
Finally, Fig. 2C shows the full images calculated from R′xx (Eq.
4). The removal of multiple reflections has enabled the discovery
of previously hidden bright targets at shallow depths. However,
the confocal image still suffers from aberrations, especially at
small and large depths (Fig. 2C).

Distortion Matrix in the Speckle Regime. In ref. 42, the distortion
matrix concept was introduced for optical imaging of extended
specular reflectors in a strong aberration regime. Here, we show
how this distortion matrix approach can be extended to the
speckle regime.
Manifestation of aberrations. In Fig. 3E, a significant spread-
ing of energy over off-diagonal coefficients of R′xx (36, 45) can
be seen. This effect is a direct manifestation of the aberrations
sketched in Fig. 3A, which can be understood by rewriting R′xx
using Eqs. 7 and 8:

R′xx (z ) = H(z )×Γ(z )×H>(z ), [9]

where H(z ) = T†0×T(z ). We refer to H(z ) as the focusing matrix
(42) because each line of H(z ) corresponds to the spatial ampli-
tude distribution of the input or output focal spots (Fig. 1 C and
D). Eq. 9 tells us that the off-diagonal energy spreading in R′xx (z )
(Fig. 3E) occurs when the focusing matrix H(z ) is not diagonal
[i.e., when the free space transmission matrix T0 is a poor esti-
mator of the true transmission matrix T(z )]. This occurs when we
do not have enough information about the medium to properly
construct T0—in particular, when the speed of sound distribu-
tion is unknown. This is the cause of sample-induced aberrations,
which manifest in the off-diagonal energy spreading in R′xx (z )
and finally, in the poor resolution in some parts of the confocal
image (Fig. 2C).
The memory effect. To isolate and correct for these aberration
effects, we build upon a physical phenomenon often referred to
as the memory effect (50–52) or isoplanatism (1, 53) in wave
physics. Usually, this phenomenon is considered in a plane wave
basis. When an incident plane wave is rotated by an angle θ,
the far-field speckle image is shifted by the same angle θ (50,
51) [or −θ if the measurement is carried out in reflection (34,
54)]. Interestingly, this class of field–field correlations also exists
in real space: waves produced by nearby points inside a com-
plex medium can generate highly correlated, but tilted, random
speckle patterns in the far field (5, 6, 39, 40, 55). In the focused
basis, this corresponds to a spatially invariant point spread func-

tion (or focal spot) over an area called the isoplanatic patch. For
aberration correction, our strategy is the following: 1) highlight
these spatial correlations by building a dual-basis matrix (the dis-
tortion matrix) that connects any input focal point in the medium
with the distortion exhibited by the corresponding reflected wave
front in the far field (42) and 2) take advantage of these correla-
tions to accurately estimate the transmission matrix T(z ) in the
same dual basis.
Revealing hidden correlations. To isolate the effects of aberra-
tion in the reflection matrix, R′xx (z ) is first projected into the
Fourier basis in reception using the free space transmission
matrix T0:

Rkx (z ) = T0×R′xx (z ). [10]
Since the aberrating layer under consideration is laterally invari-
ant, we might expect the memory effect to cause long-range cor-
relation in Rkx (z ) [i.e., repeating patterns among the rows and/or
columns of Rkx (z )]. However, this is not the case: as sketched
in Fig. 4C, input focusing points at different locations result in
wave fronts with different angles in the far field (SI Appendix,
section S1 and Fig. S2 have further details). This geometric effect
hides the correlations that could allow discrimination between
isoplanatic patches.

To reveal correlations in Rkx (z ), the reflected wave front can
be decomposed into two contributions (SI Appendix, Fig. S2): 1)
a geometric component that would be obtained for a perfectly
homogeneous medium (represented by the black dashed line in
Fig. 4B) and that can be directly extracted from the reference
matrix T0 and 2) a distorted component due to the mismatch
between the propagation model and reality (Fig. 4 C, Left). The
key idea of this paper is to isolate the latter contribution by sub-
tracting, from the experimentally measured wave front, its ideal
counterpart. Mathematically, this operation can be expressed as
a Hadamard product between the normalized reflection matrix
R̂kx (z ) = [R(kout, xin, z )/|R(kout, xin, z )|] and T∗0,

D(z ) = R̂kx (z ) ◦T∗0, [11]

which in terms of matrix coefficients, yields

D(kout, xin, z ) = R̂(kout, xin, z )T ∗0 (xin, kout). [12]

The matrix D = [D(kout, rin)] is the distortion matrix defined over
the field of illumination (FOI) mapped by the set of input focus-
ing points rin. It connects any input focal point rin to the distorted
component of the reflected wave field in the far field. Note that,
unlike conventional adaptive focusing techniques, no bright scat-
terer is used as a guide star in our matrix approach. In fact, this
is why a normalized reflection matrix R̂kx is considered in Eq. 11.
All input focusing points rin have the same weight in D, regard-
less of their reflectivity. Hence, the eight bright targets contained
in the phantom (Fig. 2A) do not play the role of guide stars.

Compared with Rkx (Fig. 4B), D exhibits long-range correla-
tions (SI Appendix, Fig. S2). While the original reflected wave
fronts display a different tilt for each focal point rin, their dis-
torted component displays an almost invariant aberration phase
law over all rin (Fig. 4C). To support our identification of spatial
correlations in D with isoplanatic patches, D is now expressed
mathematically. We begin with the simplest case of an isopla-
natic aberration that implies, by definition, a spatially invariant
input focal spot: H (x , xin, z ) =H (x − xin). Under this hypothe-
sis, the injection of Eqs. 9 and 10 into Eq. 11 gives the following
expression for D (SI Appendix, section S3):

D(z ) = T×S(z ), [13]

where the matrix S is the set of incoherent virtual sources
recentered at the origin such that

S(x ′, xin, z ) = γ(x ′+ xin, z )H (x ′). [14]

Lambert et al. PNAS | June 30, 2020 | vol. 117 | no. 26 | 14649
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concatenation
along z

D(z) DRxx(z) Rkx(z)

r1
r2 r3A B C D E

Fig. 4. Time-reversal analysis of the distortion matrix. (A) Each input focused illumination gives rise to a tilted reflected wave front. (B) After far-field
projection (Eq. 10), each wave field is stored along a line of RT

kx(z). (C) By removing the geometrical tilt (dashed black line in B) of each reflected wave front
(Eq. 11), a set of distortion matrices D(z) is obtained at each depth z. These matrices are concatenated to yield a full-field distortion matrix D. D is equivalent
to a reflection matrix but with input focal spots H(x− xin) virtually shifted at the same location (Eq. 13). (D) Its correlation matrix C mimics the time-reversal
operator associated with a virtual specular reflector of scattering distribution |H(x)|2. (E) The normalized correlation matrix Ĉ makes the virtual reflector
point like (SI Appendix, section S4). Its SVD (Eq. 20) then yields the transmission matrix over each isoplanatic patch contained in the FOI (Eq. 22).

x ′= x − xin represents a new coordinate system centered around
the input focusing point. These virtual sources are spatially inco-
herent due to the random reflectivity of the medium, and their
size is governed by the spatial extension of the input focal spot.
The physical meaning of Eqs. 13 and 14 is the following: remov-
ing the geometrical component of the reflected wave field in the
far field as done in Eq. 11 is equivalent to shifting each virtual
source to the central point xin = 0 of the imaging plane. D is
still a type of reflection matrix but one that contains different
realizations of virtual sources all located at the origin (Fig. 4 C,
Right). This superposition of the input focal spots will enable the
unscrambling of the propagation and scattering components in
the reflected wave field.
Time-reversal analysis. The next step is to extract and exploit
the correlations of D for imaging. In the specular scattering
regime, D is dominated by spatial correlations in the input
focal plane (42). This is due to the long-range coherence of
the sample reflectivity for specular reflectors. Conversely, in the
speckle scattering regime, the sample reflectivity γ(r) is random:
〈γ(r)γ∗(r′)〉= 〈|γ|2〉δ(r− r′), where δ is the Dirac distribution
and the symbol 〈· · · 〉 denotes an ensemble average. In this case,
correlations in the Fourier plane dominate. To extract them, the
correlation matrix C =N−1DD† is an excellent tool. The coef-
ficients of C are obtained by averaging the angular correlations
of the distorted wave field D(kout, rin) over the N input focusing
points rin = (xin, z ):

C (kx , k ′x ) =N−1
∑
rin

D(kx , rin)D∗(k ′x , rin). [15]

C can be decomposed as the sum of a covariance matrix 〈C〉 and
a perturbation term δC:

C = 〈C〉+ δC. [16]

C will converge toward 〈C〉 if the incoherent source term S of Eq.
13 is averaged over enough independent realizations of disor-
der (i.e., if the perturbation term δC tends toward zero). In fact,
the intensity of δC scales as the inverse number M of resolution
cells in the FOV (56). In the present case, M =LxLz/(δxδz )∼
10,000, where (Lx ,Lz ) is the spatial extent of the overall FOV
and (δx , δz ) is the spatial extent of each resolution cell (Fig. 3A).
In the following, we will thus assume a convergence of C toward
its covariance matrix 〈C〉 due to disorder self-averaging.

Let us now express the covariance matrix 〈C〉 theoretically.
This allows 〈C〉 to be written as (SI Appendix, section S4)

〈C〉= T×ΓH ×T†, [17]

where ΓH is diagonal and its coefficients are directly proportional
to |H (x )|2. ΓH is equivalent to a scattering matrix associated
with a virtual coherent reflector whose scattering distribution
corresponds to the input focal spot intensity |H (x )|2 (Fig. 4D).
Expressed in the form of Eq. 17, 〈C〉 is analogous to a reflection
matrix associated with a single scatterer of reflectivity |H (x )|2.
For such an experimental configuration, it has been shown that
an iterative time-reversal process converges toward a wave front
that focuses perfectly through the heterogeneous medium onto
this scatterer (25, 43). Interestingly, this time-reversal invari-
ant can also be deduced from the eigenvalue decomposition of
the time-reversal operator RR† (25, 43, 57). The same decom-
position could thus be applied to C in order to retrieve the
wave front that would perfectly compensate for aberrations
and optimally focus on the virtual reflector. This effect is illus-
trated in Fig. 4D. It is important to emphasize, however, that
the induced focal spot is enlarged compared with the diffrac-
tion limit (58, 59). For the goal of diffraction-limited imaging,
the size of this focal spot should be reduced. In the follow-
ing, we express this situation mathematically and show how to
resolve it.

By the van Cittert–Zernike theorem (6), the correlation coef-
ficients C (k ′x , kx ) are directly proportional to the Fourier trans-
form of the scattering distribution |H (x )|2 (SI Appendix, section
S4 has details). To reduce the size of the virtual reflector, one can
equalize the Fourier spectrum of its scattering distribution. Inter-
estingly, this can be done by normalizing the correlation matrix
coefficients as follows:

Ĉ (k ′x , kx ) =C (k ′x , kx )/|C (k ′x , kx )|. [18]

This operation is illustrated by Fig. 4E. The normalized correla-
tion matrix Ĉ =

[
Ĉ (k ′x , kx )

]
can be expressed as

Ĉ = T×Γδ ×T†. [19]

In contrast to the operator ΓH of Eq. 17, Γδ is a scattering matrix
associated with a point-like (diffraction-limited) reflector at the
origin (Fig. 4E). A reflection matrix associated with such a point-
like reflector is of rank 1 (25, 43); this property should also hold
for the normalized correlation matrix Ĉ in the case of spatially
invariant aberrations. As we will see, the first eigenvector of Ĉ
yields the distorted component of the wave front, and its phase
conjugation enables compensation for aberration, resulting in
optimal focusing within the corresponding isoplanatic patch.

14650 | www.pnas.org/cgi/doi/10.1073/pnas.1921533117 Lambert et al.
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Beyond the isoplanatic case, the singular value decomposition
(SVD) of Ĉ can be written as follows:

Ĉ = UΣV†. [20]

Σ is a diagonal matrix containing the singular values σi in
descending order: σ1>σ2> ..>σN . U and V are unitary matri-
ces that contain the orthonormal set of eigenvectors Ui and Vi ,
respectively. In a conventional iterative time-reversal experiment
(25, 43), there is a one-to-one association between each eigen-
state of the reflection matrix and each point-like target in the
medium. The corresponding singular value σi is related to the
scatterer reflectivity, and the eigenvector Ui yields the transmit-
ted wave front that focuses on the corresponding reflector. In
this work, iterative time reversal is applied to Ĉ. Each isopla-
natic patch in the FOI gives rise to a virtual reflector at the origin
associated with a different aberration phase law. We thus expect
a one-to-one association between each isoplanatic patch p and
each eigenstate of Ĉ: for each isoplanatic patch, the eigenvec-
tor Up = [U p(kx )] should yield the corresponding distorted wave
front in Fourier space, and the singular value σp should provide
an indicator of the focusing quality in that patch.

Isoplanatic Patches and Shannon Entropy.
FOV decomposition into isoplanatic patches. We now apply our
theoretical predictions to the experimental ultrasound imag-
ing data. Fig. 5A displays the normalized singular values σ̂i =

σi/
∑N

j=1 σj of the correlation matrix Ĉ. If the convergence
toward the covariance matrix was complete, the rank of Ĉ should
yield the number of isoplanatic patches in the ultrasound image.
In Fig. 5A, a few singular values seem to dominate, but it is not
clear how many are significantly above the noise background. To
solve this problem, we consider the Shannon entropy H of the
singular values σ̂i (60, 61):

H(σ̂i) =−
N∑
i=1

σ̂i log2 (σ̂i). [21]

Shannon entropy yields the least biased estimate possible for the
information available (i.e., the dataset with the least artifact for a
given signal-to-noise ratio). Thus, it can be used here as an indi-
cator of how many eigenstates are required to create an adequate
ultrasound image without being affected by the perturbation
term in Eq. 16 (42). The singular values of Fig. 5A (calculated
using the model wave velocity c = 1,800 m/s) have an entropy of
H' 2.85 (Fig. 5C). Hence, only the three first eigenstates should
be required to construct an unaberrated image of the medium.
Fig. 5B shows the phase of the three first eigenvectors Up. U1

is almost flat and exhibits a phase SD of 0.28 radians, indicat-
ing that no correction for aberration (or a very minimal one) is
required for optimal focusing in the isoplanatic patch associated
with that vector. U2 and U3, however, display phase SDs of 1.36
and 1.62 radians, respectively. They are probably associated with
the most aberrated parts of the image. Now that the important
eigenstates are known, an estimator T̄p of the transmission matrix
can now be calculated by combining the free space T0 matrix and
the normalized eigenvector Ûp = [U p(kx )/|U p(kx )|]:

T̄p = Ûp ◦T0. [22]

The normalization of Up ensures an equal contribution of each
spatial frequency in T̄p. Then, the transmission matrices T̄p can
be used to project the reflection matrix into the focused basis:

Rp = T̄†p ×R′kk × T̄∗p . [23]

Fig. 3 E and F illustrates the benefit of our matrix approach at
depth z = 25 mm. While the original matrix R′xx exhibits a signif-
icant spreading of the backscattered energy over its off-diagonal
elements (Fig. 3E), the corrected reflection matrix R3 (Eq. 23)
is almost diagonal (Fig. 3F). This feature demonstrates that the
input and output focal spots are now close to being diffrac-
tion limited. In other words, aberrations have been almost fully
corrected by the transmission matrix T3 at depth z = 25 mm.

The resulting ultrasound images, Ip(r), calculated from the
diagonal elements of Rp, are displayed in Fig. 5 D, F, and H:
each estimator T̄p of the transmission matrix reveals a well-
resolved and contrasted image of the phantom over distinct
isoplanatic patches. U1 is associated with an isoplanatic patch
at middepth (z ' 45− 55 mm). As previously anticipated, cor-
rection by U1 leaves the image almost unchanged (compare
Figs. 2C and 5D). This isoplanatic patch does not require aberra-
tion correction because the model wave velocity c = 1,800 m/s
is already close to the integrated speed of sound value at
middepth. However, the phases of U2 and U3 exhibit curved
shapes, which indicate an incorrect model for the speed of
sound c (Fig. 5B). While the convex shape of U2 suggests an
underestimation of c, the concave shape of U3 indicates over-
estimation. Correction with each eigenvector compensates for
the associated distortion effect: the confocal images show an
optimized contrast and resolution at large depths (z > 70 mm)
for T̄2 (Fig. 5F) and shallow depths (25< z < 40 mm) for T̄3

(Fig. 5H).
The gain in image quality can quantified by the Strehl ratio, S

(62). Initially introduced in the context of optics, S is defined as
the ratio of the peak intensity of the imaging system point spread
function with aberration to that without. Equivalently, it can also
be defined in the far field as the squared magnitude of the mean
aberration phase factor. S is directly proportional to the focusing
parameter introduced by Mallart and Fink in the context of ultra-
sound imaging (6). Here, we can calculate a spatially resolved
Strehl ratio using the distortion matrices Dp = Rp ◦T∗0 computed
after aberration correction:

Sp(rin) =
∣∣∣〈Dp(kout, rin)〉kout

∣∣∣2 , [24]

where the symbol 〈· · · 〉 denotes an average over the variable in
the subscript (which here is the output transverse wave num-
ber kout). The Strehl ratio ranges from zero for a completely
degraded focal spot to one for a perfect focusing. The maps of
Strehl ratio corresponding to the confocal images Ip are shown
in Fig. 5 E, G, and I. These maps enable direct visualization of
the isoplanatic area in which each different aberration correction
is effective, allowing quantitative confirmation of our previous
qualitative analysis of confocal images. Moreover, Sp enables an
estimation of the focus quality at each point of the image. Com-
pared with the initial value S1 displayed in Fig. 5E, S2 and S3
show an improvement of the focusing quality by a factor 3 at large
and shallow depths, respectively (Fig. 5 G–I).

The results displayed in Fig. 5 show that the decomposition of
the imaging problem into isoplanatic patches, originally demon-
strated with D for large specular reflectors in optics (42), also
holds in a random speckle regime if we consider, this time,
the normalized correlation matrix Ĉ. In fact, the process actu-
ally performs even better in speckle than for specular reflectors
since it is possible to discriminate between aberrations in input
and output, and hence to correct for each independently. The
drawback here lies in the fact that corrections over each iso-
planatic patch are difficult to combine. To address this issue, a
first option is to refine the propagation model (i.e., the speed of
sound distribution). To that end, the Shannon entropyH(σi) is a
valuable tool.

Lambert et al. PNAS | June 30, 2020 | vol. 117 | no. 26 | 14651
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Shannon entropy minimization. The first path toward full-field
imaging is based on a minimization of the distortion entropy
H(σi) (Eq. 21). The logic is as follows. 1) In the speckle regime,
there is a direct relation between the Shannon entropy H(σi) of
Ĉ and the number Np of isoplanatic patches supported by the
FOI (shown in the previous section). 2) When the propagation
model inside the FOI gets closer to reality, the number Np of iso-
planatic patches within the FOI decreases (SI Appendix, Fig. S3).
3) Thus,H(σi) is minimal when the propagation model matches
the speed of sound distribution in the FOI. This rationale is only
valid if the convergence of Ĉ toward 〈Ĉ〉 is achieved. To ensure
this convergence, we note that, as shown in SI Appendix, section
S5, the SD of the coefficients of Ĉ is proportional to the width
of the aberrated point spread function. Thus, for a more pre-
cise measure of entropy, we calculate H(σi) from the corrected
distortion matrix D1.

Fig. 5C provides a first proof of concept of this idea. It shows
the entropy H(σi) as a function of the speed of sound c used to
model the propagation of ultrasonic waves in the FOI considered
(here, the phantom down to z = 80 mm). H(σi) exhibits a mini-
mum around c = 1550 m/s, which is close to the speed of sound
cp in the phantom. Using this optimized wave velocity in the
propagation model, a single adaptive focusing correction then
enables compensation for aberrations over the whole FOV (SI
Appendix, Fig. S3).

Note that while the entropy H1(σi) displays a minimum, it
does not reach the ideal value of one. A first reason for this is the
perturbation term in Eq. 16: experimental noise and an insuffi-
cient number of input focal points can hinder perfect smoothing
of the fluctuations caused by the random sample reflectivity.
Another potential reason is that imperfections in the probe or
plexiglass layer could induce lateral variations of the aberrations
upstream of the FOV.
Discussion. To obtain a spatial map of the speed of sound and a
full-field image of a heterogeneous medium, one would need to
repeat the same entropy minimization process described above
but over a finite and moving FOI. The value of c that mini-
mizes the entropy would be the speed of sound averaged over this
FOI. However, a compromise must be made between the spatial
resolution (FOI size) and the precision of the speed of sound
measurement (SI Appendix, section S5). Moreover, note that for
highly resolved mapping, this approach may prove prohibitively
computationally expensive.

Transmission Matrix Imaging.
Phantom imaging: Depth-dependent aberrations. The second
route toward full-field imaging is more general and goes far
beyond the case of spatially invariant aberrations. It consists of
locally estimating each coefficient of the transmission matrix T
that links the far-field and focused bases. The idea is to consider
a subdistortion matrix D′(rp) centered on each pixel rp of the
image over a limited FOI:

D ′(kout, rin, rp) =D(kout, rin)W (rin− rp), [25]

where W (r) is the spatial window function

W (r) =

{
1 for |x |<∆x and |z |<∆z

0 otherwise.

The extent (∆x , ∆z ) of this FOI should be subject to the fol-
lowing compromise. It should be large enough to average the
fluctuations linked to disorder but sufficiently small to enable
a local measurement of aberrations (SI Appendix, section S5).
Here, the dimensions of this window have been empirically set to
∆z = 5 mm, with ∆x = 25.6 mm (the lateral extent of the image).
For each image pixel rp, a normalized correlation matrix Ĉ′(rp)
can be deduced from D′(rp). The first eigenvector U1(rp) yields
a local aberration phase law for each pixel of the image. It can
then be used to build an estimator T̄ of the global transmission
matrix T:

T̄ (kx , rp) = Û1(kx , rp)T0(kx , rp). [26]

T̄ is then used to compensate for all of the phase distortions
undergone by the incident and reflected wave fronts. Mathemat-
ically, this is accomplished by applying the phase conjugate of T̄
to both sides of the far-field reflection matrix R′kk :

RF = T̄†×R′kk (z )× T̄∗. [27]

The diagonal elements of the full-field reflection matrix RF

yield the confocal image IF (r) displayed in Fig. 2E. The corre-
sponding Strehl ratio map SF is shown in Fig. 2F. The clarity
of the ultrasound image compared with the initial (Fig. 2B)
and intermediate (Fig. 2C) ones and the marked improve-
ment in SF compared with that of Fig. 2D demonstrate the
effectiveness of this transmission matrix approach. A satisfy-
ing Strehl ratio SF ∼ 0.4 is reached over the entire FOV,

D F HE G I
A

B

C

Fig. 5. Retrieving the transmission matrix T from the correlation matrix Ĉ. Results of the SVD of Ĉ are shown: (A) normalized singular values σ̃i and (B) the
phase of the three first eigenvectors, Ui . (C) Entropy H (Eq. 21) of the singular values σi is plotted vs. the model speed of sound c. (D–H) Confocal images
Ip(r) are shown with their corresponding Strehl ratio maps Sp(r), deduced from the three first transmission matrices T̄p (Eq. 24). The ultrasound images and
Strehl ratio maps are displayed with the same dynamic (black and white) and linear (color) scales, respectively.
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and a factor of five improvement is observed at shallow and
large depths where the impact of the aberrating layer is the
strongest. Such an improvement of the focusing quality is far
from being negligible as it translates to a gain of 14 dB in image
contrast.

This proof of concept experiment opens a number of addi-
tional questions. First, despite our best efforts, the measured
Strehl ratio SF does not approach the ideal value of one. Sev-
eral reasons can account for this: 1) a part of the reflected wave
field has been lost at shallow depth when specular reflections
and clutter noise have been removed; 2) experimental noise and
multiple scattering events taking place upstream of the focal
plane could hamper our measure of the Strehl ratio, especially
at large depths; and 3) the same correction applies to the whole
frequency bandwidth, while the aberrations are likely to be dis-
persive (although for the phantom/plexiglass system considered
here, dispersion should not be very strong). Second, this experi-
ment only involves depth-dependent aberrations. While such a
configuration is of interest for, for example, imaging the liver
through fat or muscle layers, or the brain through the skull,
it lacks generality. In the next section, both lateral and depth
variations of aberrations are addressed by an in vivo imaging
experiment.
In vivo ultrasound imaging: Spatially distributed aberrations. We
now apply the aberration correction technique to a dataset
acquired in vivo from a human calf (Materials and Methods).
The uncorrected image is shown in Fig. 6B. Larger structures
can be clearly identified, such as the vein (white arrow) near
(x , z )≈ (1, 33) mm. Some smaller structures are visible, such as
muscle fibers running perpendicular to the FOV (bright spots),
but blurring of many of these structures is visible by eye (e.g.,
the highlighted areas in Fig. 6B). This observation is confirmed
by the accompanying Strehl ratio map in Fig. 6A, which shows
values inferior to 0.1 over most areas of the image. In the
previous section, Strehl ratio maps of the phantom/plexiglass
systems showed values smaller than 0.1 for areas that were the
most strongly affected by aberration. These results suggest that
the image in Fig. 6B is significantly aberrated over the entire
spatial area.

To correct for aberration, we apply the technique described
in previous sections. Due to the heterogeneity of the tissues
examined, it can be expected that there are multiple isoplanatic
patches, which should not be assumed to be laterally invariant

or of the same spatial extent. For full-field imaging, we thus
extend the FOI scanning method to an iterative approach that
consists of gradually decreasing the spatial extent of the FOI.
Specifically, this entails correcting as in Eq. 27, recalculating
a new D, and performing a new correction with a smaller
window size. The process is iterated until optimal focusing is
achieved—maximization of the Strehl ratio for each focal point.
Four window sizes were used: W (∆x , ∆z ) = [(10, 20), (7.5, 15),
(5, 10), (3, 7.5)] mm. In SI Appendix, Fig. S4, the spatial dis-
tribution of aberrations is exhibited in the evolution of the
phase of Û1 across the FOV. Aberrations are shown to be
strongly position dependent and to display high spatial frequen-
cies. Such a configuration would be particularly complicated
for conventional adaptive focusing techniques. In contrast, the
transmission matrix is the ideal tool to overcome such complex
aberrations.

After correction (Fig. 6C), the ultrasound image is indeed
sharper, with better contrast, and smaller structures can be
more easily discerned (highlighted areas in Fig. 6 B and C).
The Strehl ratio map shows that the image resolution has
been improved over most regions of the image (Fig. 6D),
with the most significant improvements being at muscle fibers
[e.g., at (x , z )≈ (8, 28) mm] or boundaries between differ-
ent tissue types [e.g., at (x , z )≈ (5, 12) mm]. The values of
SF ∼ 0.2− 0.4 are encouraging as this is the range of values
observed when diffraction-limited resolution was achieved for
the phantom system. Again, experimental noise and multiple
scattering are potential causes for the less than ideal values
of SF < 1.
Discussion. Unlike conventional adaptive focusing whose effi-
ciency range is limited to a single isoplanatic patch (Fig. 1), a full-
field image of the medium under investigation is obtained with
diffraction-limited resolution. Note that other recent approaches
for acoustic imaging have also proposed analogous spatial sec-
tioning to correct for spatially distributed aberration (24, 63). In
this respect, a key parameter is the choice of the FOI at each
iteration. As shown in SI Appendix, section S5, the SVD of Ĉ will
succeed in properly extracting the local aberration transmittance
if the number N of input focusing points in each FOI is at least
four times larger than the number of transverse resolution cells
mapping the aberrated focal spot, Mδ = δx/δx0. This is why the
FOI can be reduced after each iteration of the aberration correc-
tion process. As the imaging point spread function narrows, Mδ
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Fig. 6. Aberration correction of in vivo imaging. Before correction, (A) the Strehl ratio map and (B) the confocal image exhibit the consequences of
sample-induced distortion. (C) The corrected confocal image has improved contrast and resolution, as evidenced by the corresponding Strehl ratio map in
D. Rectangular and circular areas in B and C highlight areas for comparison of images before and after correction.
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becomes smaller, and the required number N of input focusing
points decreases.

Discussion and Conclusion
The distortion matrix approach provides a powerful tool for
imaging inside a heterogeneous medium with a priori unknown
characteristics. Aberrations can be corrected without any guide
stars or prior knowledge of the speed of sound distribution in
the medium. While our method is inspired by previous works in
ultrasound imaging (5, 6, 8, 39, 40), and is built on the recent
introduction of the distortion matrix in optics (42), it features
several distinct and important advances.

The first is its primary building block: the broadband focused
reflection matrix that precisely selects the echoes originating from
a single scattering event at each depth. This operation is deci-
sive in terms of signal-to-noise ratio since it drastically reduces
the detrimental contribution of out-of-focus and multiply scat-
tered echoes. Equally importantly, this matrix captures all of the
input–output spatial correlations of these singly scattered echoes.

The approach presented here also introduces the projection of
the reflection matrix in the far field. This enables the elimination
of artifacts from multiple reflections between parallel surfaces,
revealing previously hidden parts of the image. Here, we have
only examined reflections from surfaces that are parallel to the
ultrasound array, which is more relevant for imaging layered
materials than it is for imaging human tissue. While signatures
of other flat surfaces should be identifiable as correlations in
off-antidiagonal lines of Rkk or in other mathematical bases
(64), reverberations from uneven or curved surfaces cannot, at
present, be addressed with this method.

For aberration correction, projection of the reflection matrix
into a dual basis allows the isolation of the distorted component.
Then, all of the input focal spots can be superimposed onto the
same (virtual) location. The normalized correlation of these dis-
torted wave fields, and an average over disorder, then enables the
synthesis of a virtual reflector. Unlike related works in acoustics
(8, 24, 39, 40), this virtual scatterer is point like (i.e., not limited
by the size of the aberrated focal spot). Moreover, this approach
constitutes a significant advance over recent works, which were
limited to aberration correction at either input (24) or output
(42). Here, we demonstrate how the randomness of a scattering
medium can be leveraged to identify and correct for aberra-
tions at both input and output. By retrieving the transmission
matrix between the elements of the probe and each focal point
in the medium, spatially distributed aberrations can be over-
come. A full-field and diffraction-limited image is recovered. Our
approach is thus straightforward, not requiring a tedious iterative
focusing process to be repeated over each isoplanatic patch.

It is important to note that, although the first experimental
proof of concept involved a relatively simple multilayered wave
velocity distribution, our approach is not at all limited to laterally
invariant aberrations. As shown by the in vivo imaging experi-
ment, the distortion matrix approach also corrects for complex
position-dependent aberrations caused by an unknown speed of
sound distribution in the medium.

Last but not least, we furthermore exploit concepts from infor-
mation theory. In particular, we introduce the idea that, by
minimizing the Shannon entropy of the correlation matrix Ĉ,
the local acoustic velocity c can be estimated for a chosen FOI.
Further work will focus on refining this technique for detailed
mapping of c even through strong inhomogeneities. The wave
velocity is actually a quantitative marker for structural health
monitoring or biomedical diagnosis. A particularly pertinent
example is the measurement of the speed of sound in the human
liver, which is decisive for the early detection of nonalcoholic
fatty liver diseases (65), but which must be measured through
aberrating layers of fat and muscle.

Despite all these exciting perspectives, our matrix approach
still suffers from several drawbacks that should be tackled in the
near future. One limitation is its restriction to a speckle scat-
tering regime. Theoretically, for specular reflection, the SVD of
D should be examined rather than of Ĉ (42). Future theoretical
developments will examine the exact relation between the singular
states of Ĉ and D in a regime that combines speckle and specular
scattering. A second limit lies in our broadband analysis; for a dis-
persive medium, time reversal of wave distortions—rather than a
simple phase conjugation—will be required. Third, we are limited
by the size of isoplanatic patch that can be resolved; treatment
of high-order aberrations requires that sufficiently small patches
be resolvable. This issue, however, can be partially overcome by
gradually reducing the FOI for the distortion matrix. Finally, on a
related note, the contribution of multiple scattering has not been
thoroughly treated. Although the distortion matrix approach can
eliminate most of the multiple scattering background using an
SVD process (42), it could in the future take advantage of multiple
scattering to using the medium as a scattering lens and improve
the resolution beyond the diffraction limit (66).

To conclude, the distortion matrix concept can be applied
to any field of wave physics for which multielement technology
is available. A reflection matrix approach to wave imaging has
already been initiated in optical microscopy (9, 10, 35, 41, 42),
multiple-input multiple-output radar imaging (67), and seismol-
ogy (36). The ability to apply the distortion matrix to random
media (not just specular reflectors) should be valuable for optical
deep imaging in biological tissues (68). At the other end of the
spatial scale, volcanoes and fault zones are particularly hetero-
geneous areas (36) in which the distortion matrix concept could
be fruitful for a bulk seismic imaging of the Earth’s crust beyond
a few kilometers in depth. The reflection/distortion matrix con-
cept is thus universal. The potential range of applications of this
approach is wide and highly promising, whether it be for a direct
imaging of the medium reflectivity or a quantitative and local
characterization of the wave speed (45, 65), absorption (69), and
scattering (70, 71) parameters.

Materials and Methods
Tissue-Mimicking Phantom Experiment. The experimental setup consisted of
a 1D ultrasound phased-array probe (SuperLinear SL15-4) connected to an
ultrafast scanner (Aixplorer; SuperSonic Imagine). The array contains 256
elements with pitch p = 0.2 mm. The acquisition sequence consisted of emis-
sion of plane waves at 49 incident angles θin spanning −24◦ to 24◦. The
emitted signal was a sinusoidal burst of central frequency f0 = 7.5 MHz
and bandwidth of 2.5 to 10 MHz. In reception, all elements were used to
record the reflected wave field over a time length ∆t = 124 µs at a sampling
frequency of 30 MHz.

In Vivo Ultrasonic Data. The in vivo ultrasound dataset was collected by the
SuperSonic Imagine company on a healthy volunteer from which informed
consent had been obtained. Before being put at our disposal, this dataset
was previously fully anonymized following standard practice defined by
Commission nationale de l’information et des libertées (CNIL). The ultra-
sonic probe consisted of a 1D 5- to 18-MHz linear transducer array (SL18-5;
SuperSonic Imagine) connected to an ultrafast scanner (Aixplorer Mach-30;
SuperSonic Imagine). The array contains 192 elements with pitch p = 0.2
mm. The probe was placed in direct contact with the calf of the healthy
volunteer, orthogonally to the muscular fibers. The ultrasound sequence
consisted of transmitting 101 plane waves at incident angles spanning−25◦

to 25◦, calculated using a speed of sound hypothesis of c0 = 1,580 m/s. The
pulse repetition rate was 1,000 Hz. The emitted signal was a sinusoidal
burst of three half periods of central frequency fc = 7.5 MHz. For each exci-
tation, all elements recorded the backscattered signal over a time length
∆t = 80 µs at a sampling frequency of 40 MHz. This ultrasound emission
sequence meets the FDA Track 3 Recommendations.

Multiple Reflection Filter. The multiple reflection filter consists of applying
an adaptive Gaussian filter to remove the specular contribution that lies
along the main antidiagonal of Rkk, such that
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R(kout, kin) = R(kout, kin)
[

1−αe−|kout+kin|
2/δk2

]
. [28]

The width δk of the Gaussian filter scales as the inverse of the transverse
dimension ∆x of the FOV: δk = ∆x−1. The parameter α defines the strength
of the filter:

α=
〈|R(kout, kin)|〉∆k>δk

〈|R(kout, kin)|〉∆k<δk
− 1, [29]

where the symbol 〈· · · 〉 denotes an average over the couples (kout, kin)
separated by a distance ∆k = |kout− kin| smaller or larger than δk. When
the specular component dominates, the parameter α tends to one, and
the Gaussian filter is fully applied: The main antidiagonal of Rkk is then
set to zero (Fig. 3F). When there is no peculiar specular contribution, the
parameter α tends to zero, and the Gaussian filter is not applied: the main
antidiagonal of Rkk remains unchanged.

Data Availability. Data used in this manuscript have been deposited at
Figshare, https://figshare.com/projects/Distortion matrix approach for full-
field imaging of random scattering media 2020/78141.
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